منابع مشابه
A note on the Newton radius
The Newton radius of a code is the largest weight of a uniquely correctable error. We establish a lower bound for the Newton radius in terms of the rate. In particular we show that in any family of linear codes of rate below one half, the Newton radius increases linearly with the codeword length.
متن کاملA Note on a Family of Newton Type Iterative Processes
In this paper, we study the convergence of a family of iteration methods to solve nonlinear equations in the complex plane. Two analysis of convergence are provided. We give a Kantorovich-type convergence theorem under mild differentiability conditions with error analysis.
متن کاملA Note On Covering Radius Of Macdonald Codes
In this paper we determine an upper bound for the covering radius of a q-ary MacDonald codeCk;u(q). Values of nq(4; d), the minimal length of a 4-dimensional q-ary code with minimum distance d is obtained for d = q 1 and q 2. These are used to determine the covering radius of C3;1(q),C3;2(q) and C4;2(q).
متن کاملA Note on Schrödinger–newton Systems with Decaying Electric Potential
We prove the existence of solutions for the singularly perturbed Schrödinger–Newton system
متن کاملA Note on Pan’s Second-order Quasi-newton Updates
This note, attempts to further Pan’s second-order quasi-Newton methods([1]). To complement the numerical implementation, the linear convergence of a rank-one second-order update and the least change property are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2012
ISSN: 0012-365X
DOI: 10.1016/j.disc.2012.03.038